CELL BIOLOGY

Name:	KET	
Date:		- 6

Chapter 14 Review Guide

Define the following:

1. Karyotype- Chart showing all chromosomes			
2. Autosome- non-sex chromosomes			
3. Pedigree Chart- 5how genetics of a trait in generation			
4. Polygenic- many genes control trait			
5. p dominant allele			
6. q recessive allele			
7. p² homozygous dominant			
8. q2 hano zygous recessive			
9. 2pg hetero zygous			
10. p2+2pq Look dominant			
nswer the following			
11. What sex chromosomes do males have? XY females? XX			
12. What chromosome carries sex-linked traits? X - chromosome			
13. How many autosomes do humans have? 44			
14. Tigers have a total of 38 chromosomes. How many autosomes do they have?			
15. How many sex chromosomes do tigers have?			
16. Genetically, what is the cause of cystic fibrosis (be specific)			
Chromosome #7 3 bases deleted			
17. As a result of the genetic defect, how is a person's body different who has cystic			
fibrosis? protein doesn't fold properly and			
is destroyed			
18. Genetically, what is the cause of sickle cell anemia (be specific)			
one base pair missing Chrom #11			

		w is a person's body different who has sickle oin protein in blood affected
20. Deter	mine whether the following a	re dominant or recessive genetic disorders:
a.	Albinism	recessive
b.	Dwarfism (achondroplasia)	dominant
c.	Cystic fibrosis	recessive
d.	Huntington's disease	dominant
e.	Galactosema	recessive
f.	PKU	recessive
g.	Hypercholesterolemia	dominant
22. Given trait(b	How many bibles we the pedigree chart for a recess lack color), in a dragon family How many dragons express to Write the punnet square for	on the right, the trait?
% chance of females being recessive: % chance of males being normal: % chance of males being color-blind: c. How many carriers were are in the family?		
d. e.	trait? on'y cass	e trait. Why didn't any of his sons have the ed on his X-chromosome on to be a carrier? NO Why? only has I X-chromosome
f.		sive son to pass on the recessive trait to his

23. A population of squirrels are either black or red (red is recessive). If 45% of the population is black, calculate the allelic and genotypic frequencies for the

55% = red (recessive) q2=.55 population.

 $q = \sqrt{.55} = .74$ [74% red allele] P = 1-.74 = .26 [26% black allele] P2 = (26)2 : .07 (70% homozygous black) 2pq = 21.74)(.26) = .39 (39% hetrozygous black) q2 = (,74)² = .65 | 55% hawsygws 12d 24. A population in a particular European country, the chances of having cystic fibrosis

is 1 in 4500. Calculate the allelic and genotypic frequencies for the population. ,00022

q2=,00022 -> q= V.00022 = ,0149 (1.49% Ralle) P=1-.0149= 98.5190 Dallele P2: (.9851)2 = 97 (99% homozygous doment 219 = 2(.0149(.9851) =, 0294 [2.9% heterozygous]

92 = .00022 = 1.022% recessive

25. In a particular population of lemurs, there are either red-eyed lemurs or yelloweyed lemurs. If this is a trait controlled by only one gene and if 53% of the population has the dominant red-eyed genotype of (R), calculate the following:

p2+2pq a. 93 % lemurs that have red-eyes

92 b. 7.4 % lemurs that have yellow-eyes

2/9 c. 40 % lemurs that have dominant genotype

R d. 72.8 % frequency of red-eye allele

r e. 27.2 % frequency of yellow-eye allele

209=.53 P= 53 P= 1.53 = .728

9=1-,7282 .272

92 = (.272)2 = .0740

1-,0740 = p2+2pq = 93

2(.728)(.272) = .396 3