CHEMISTRY II

Name:	KEY	
Date:		00 00
		6 6

Ch 7-9 Review: Trends and Molecules

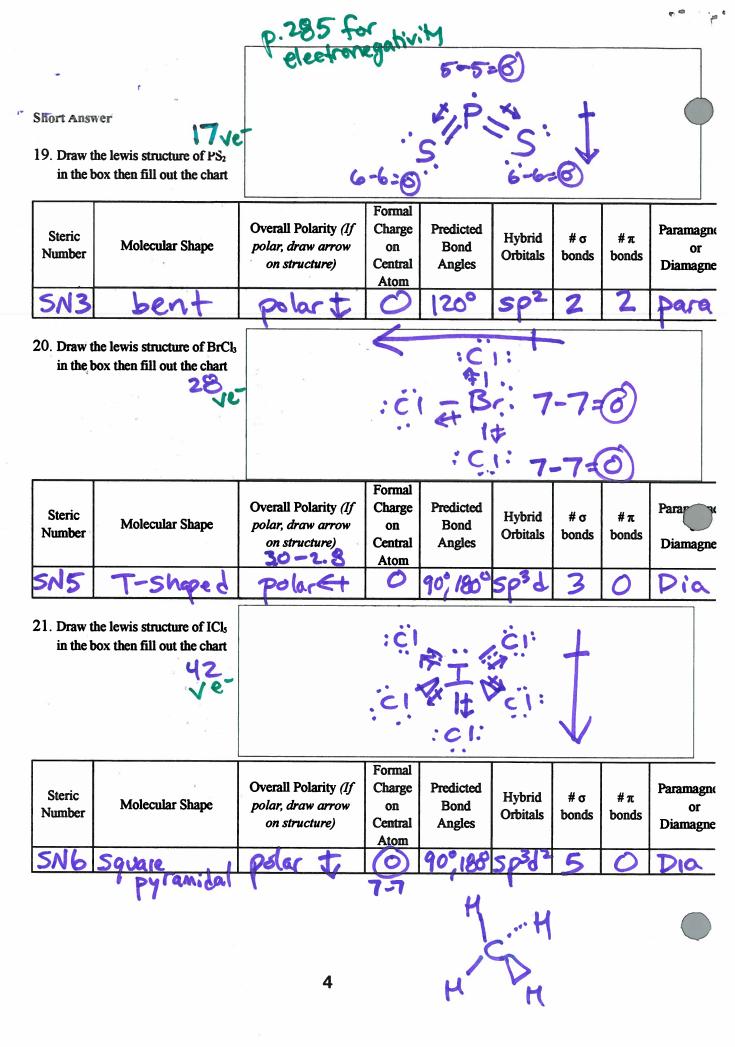
O/EX

Your test will cover the following:

22 Multiple Choice Conceptual Questions

3 BIG questions on 3 different molecules. Determine the lewis structure, steric #, molecular shape, overall polarity, formal charge, hybrid orbitals, predicted bond angle, # sigma and pii bonds, paramagnetic or diamagnetic

A few more short answer questions


Topics from Chapters 7-9

- 1. Effective Nuclear Charge
- 2. Put atoms in order increasing size
- 3. Change in size when atoms turn into ions
- 4. Change in size with loss of electron shell
- 5. Ionic radius trends
- 6. Which of the following are isoelectric
- 7. Compare ionization energy
- 8. Electron affinities
- 9. What is a free radical
- 10. Is it? Paramagnetic or diamagnetic
- 11. Which one is attracted to a magnet
- 12. Draw Lewis Structures
- 13. Resonance structures
- 14. Draw structures with octet rule exceptions
- 15. Use electronegativity to determine polarity of bonds and overall polarity
- 16. Write formal charges
- 17. Determine which structure is more stable (from formal charges)
- 18. Use bond enthalpies (from book) to calculate ΔH_{rm}
- 19. Compare bond length of single, double and triple bonds
- 20. Steric #
- 21. Molecular Shape
- 22. Bond Angle
- 23. Hybrid Orbital
- 24. Recognize hydrogen bonding
- 25. Determine number of sigma and pi bonds
- 26. Recognize shape of pi and sigma bonding
- 27. Fill in molecular orbital (MO) diagram
- 28. Recognize shape of bonding and antibonding orbitals
- 29. Determine Bond Order
- 30. Determine if bond is possible and how many bonds

To help you in studying, the following review guide will guide you through the topics covered on the test. You will still need to study items from your notes (especially your molecular geometry)

1.	Distinguish between the following: Electron Affinity, Ionization Energy, & Electronegativity
	e- by single atom remove 1ste- for e-bond
2	Find the effective nuclear charge of the following atoms: B. P. Ca. Na.
	Find the effective nuclear charge of the following atoms: B, P, Ca, Na.
3.	What is the rule for finding effective nuclear charge?
	Peda #17 on pg 267 (2 ptg) Reda #17 on pg 267 (2 ptg) Exhibiting e-)
4 .	Redu #17 on pg. 207 (2 pts)
	a) Be < Mg < ca c) 5 i < A 1 < T 1
	b) Br < Ge < Ga
5 .	
	a) same #e"
	b) C1 -: Ar, Se -2: Kr, Mg+2: Ne
6.	Redo # 27 on pg. 267 (4 pts)
	a) Se < Se ²⁻ < Te ²⁻ c) Titil (Se ³ (Ca
	Redo # 27 on pg. 267 (4 pts) a) $5e < Se^{2-} < Te^{2-}$ c) $T: +4 < Se^{+3} < Ca$ b) $Co^{+3} < Fe^{+3} < Fe^{+2}$ d) $Be^{+2} < Na^{+} < Ne$
7 .	Draw the periodic trend for Electronegativity, electron affinity and ionization energy
riodio 1	hele Periodic Table
of The	Sements To Rements
	Deines Lington Lington
	285 0.248
Y	285 0 F S CI P. 248
`	5 3 6
	Se Br
	TetI
	High

8. What is special about the O ₂ molecule that you wouldn't expect unless you drew the molecular orbital diagram? Para magnetic (mpaired e-s)
9. Name a few molecules that do not follow the octet rule. BF3, SF6, XeF4
10. Using the Electronegativity table on pg. 285, put the following in order of polarity? H-C, H-P, H-S or H-N? H-N > HS = H-C > H-P
11. Which of the following structures is polar? A. CO ₂ No B. HBr YO C. NH ₃ YES D. H ₂ S YES
12. What creates a very polar structure? high difference in electronegativity
13. What kinds of bonds are the strongest? +ciple bonds (then double bonds
14. What kinds of bonds are the longest? The shortest?
15. Which of the following structures has hydrogen bonding? A. CH ₃ OH B. BF ₃ C. SF ₆ D. PCl ₅ H-O
16. What 3 elements can create a hydrogen bond? 17. What type of bond order means that a bond does NOT form? 18. What is the bond order for a single bond? Double bond? Triple bond?

22. What	types of me	olecules are attracted	to magnets?	Param	lognet	'c						
23. What	23. What types of molecules are free radicals? Unpaired e (para mag retic)											
24. What	24. What are some examples of molecules with delocalized pi orbitals?											
25. Calculate the enthalpy of reaction of the following reaction based on the bond enthalpies (use pg. 301):												
	Pros (wso p	N ₂ H ₄	$ N_2 + 2 H_2$	rm			/					
Break (+)	12-1	1 +1 (163)	Form	1N-N	-1(163	3)	Add					
26 Comm	4 N-	H +4(391)	(-)	2H-H	-2(4	36)	+692					
		lowing molecular orb			right side o	and π	KI.					
5+5:		s the antibonding orb $99 = 18$	itais. (pg 350		<u>u</u>	16	mo					
B_2		F ₂		2(7)=1 N ₂	7	O_2						
	<*	52p		11/2								
	774	ALAL TITE				1 1	*					
	20	11/11/π.		All		11/11						
	γ2ρ			110 01	ep L							
11	1120	41 4		14/14	lep	91						
11	525	11 025		10 *		1/						
14	525	11 025		10		11.						
11/6	15	av 6%		11/4		41	*					
11	Sis	14 615		10		11						
Para		Dia		Dia		Pap	a					
27. What	is the bond	order of all the mole	cules in the la	st question?	\ _	~	-					
27. What is the bond order of all the molecules in the last question? $B_2 = \frac{1}{2}(6-4) + \frac{1}{2} = \frac{1}{2}(10-8) + \frac{1}{2}(10-8) +$												
28. Identify sigma orbitals, pi orbitals, bonding orbitals and antibonding orbitals in the following molecules:												
	+		+	7	-z	34	7					
				-2	· K.		1					
	5	TT	5	6								