BIOLC

Name:		
Date:	- Cols	

Chapter / Genetics

Matching

pure breed dominant gamete allele

Mendel recessive hybrid

- 1. Austrian monk who breed pea plants
- 2. reproductive cell
- 3. cross between two different pure lines
- 4. display same trait as parents
- 5. offspring generation
- 6. allele that covers up or masks another allele's phenotype
- 7. allele that can be hidden or covered up
- 8. a particular form of a gene

principle of independent assortment homozygous dihybrid cross phenotype

heterozygous testcross genotype codominance

- 9. genetic makeup that determines visible trait
- 10. genotype with same two alleles
- 11. genotype with different alleles
- 12. heterozygous individual displays a blend of two allele phenotypes
- 13. helps determine genotype when dominant phenotype present
- 14. has 16 possible combinations
- 15. expressed trait
- inheritance of one trait does not affect other traits inherited

Short Answer

- 17. What is the haploid number of chromosomes in humans?
- 18. What type of cell is produced when a sperm and egg unite? Zygote or diploid

 19. What type of cell does Meiosis yield haploid cells or diploid cells? haploid
- 2. 20. The pts) A test cross is performed on a tall pea plant (tall being dominant). The next generation of plants as a result of the test cross prove to be all tall plants. What was the genotype of the first tall pea plant?
 - 21. (pt) A particular flower shows codominance for its color gene. If the two possible alleles are blue or yellow, what would be the **phenotype** of a heterozygous flower? Green
 - 22. For a particular trait, how many alleles come from each parent?

23. B= Brown hair b= blond hair Mom= Bb Dad= BB What are the hair color possibilities when they have children?

	B	B
B	BB	BB
6	ВЬ	86

List possible genotypes:

BB, Bb

List possible phenotypes:

B(W)

Phenotype Ratio: All bown

24. Normal sightedness is dominant while near-sightedness is recessive. If a near-sighted man were to marry a heterozygous woman, predict the genetics of their children.

	٨	~
N	Nn	No
^	w	W

List possible genotypes:

List possible phenotypes:

Mormal near-sighted

Genotype Ratio: 1:1

Phenotype Ratio: ____(: (

25. Freckles are a dominant trait while having no freckles is recessive. If heterozygous man were to marry a heterozygous woman, what are the chances for their children of having freckles like them?

	F	F
F	FF	Ff
5	Et	H

List possible genotypes:

FF, Ff, ff

List possible phenotypes

Frechles Frechleless

Genotype Ratio: 1:2:1

Phenotype Ratio: 3:

26. Immunity to poison ivy is dominant (I) and being double-jointed is also dominant (D). A double-jointed (heterozygous) man who is immune to poison ivy (heterozygous) married a normal jointed woman who is susceptible to poison ivy. If you were conseling them on the probability of traits for their children, what would you tell them?

Father genotype: DLI i

D: 41 4: List possible genotypes: DAI: dd Ii Ddii dd I: Ddii Dd I: List possible phenotypes(two traits for each phenotype): Dd: dd I: Immune/DWble 7 DATE Immune / Normal IW/ Parblet Dd: | ddI; PIVU/Norma Genotype Ratio: 4:4:4:4 Phenotype Ratio: 4:4:4:

27. Make your own punnett square for this one... In fruit flies, normal wings is dominant to no wings and normal eyes are dominant to eyes that are bar shaped. If a heterozygous normal-eyed / homozygous no-winged fruit fly were mated with a homozygous bar-eyed / homozygous normal winged. a) What are the possible phenotypes that would be ween in the next generation? b) What is the probability that one of the offspring is normal-eyed and normal winged (give me either a fraction or a percent).

Eenn

A) Possible phenotypes
Normal Eye & Normal Wings
(EeNr) = 8
box-eyed & Normal Wings
(eeNr) = 8
B) Soolo (42)

Label the stages of Meiosis (28-37)

Telophase II	Prophase I	Telophase I	Metaphase II	
Prophase II	Metaphase I	Anaphase II	Anaphase I	

A. chromosomes(not	8. Daughter haploid cells	e. Chromatids separate to
tetrads) line up	separate	poles giving haploid #
P. Non-duplicated	E. Tetrads line up in middle	P. Daughter diploid cells
chromosomes condense	was made abligaged with gas barlow (separate
Ø. Homologous	A. Homologous	adWid Smilesease transac
chromosomes pull apart	Chromosomes Condense	Authoritisania laman lam A

Bonus Q: List the 4 parts of the Cell Cycle

G, phase, S phase, Gz phase, M phase

